← Previous · All Episodes · Next →
Baichuan-M2: Scaling Medical Capability with Large Verifier System Episode 1109

Baichuan-M2: Scaling Medical Capability with Large Verifier System

· 23:34

|

🤗 Upvotes: 28 | cs.LG, cs.AI

Authors:
Baichuan-M2 Team, :, Chengfeng Dou, Chong Liu, Fan Yang, Fei Li, Jiyuan Jia, Mingyang Chen, Qiang Ju, Shuai Wang, Shunya Dang, Tianpeng Li, Xiangrong Zeng, Yijie Zhou, Chenzheng Zhu, Da Pan, Fei Deng, Guangwei Ai, Guosheng Dong, Hongda Zhang, Jinyang Tai, Jixiang Hong, Kai Lu, Linzhuang Sun, Peidong Guo, Qian Ma, Rihui Xin, Shihui Yang, Shusen Zhang, Yichuan Mo, Zheng Liang, Zhishou Zhang, Hengfu Cui, Zuyi Zhu, Xiaochuan Wang

Title:
Baichuan-M2: Scaling Medical Capability with Large Verifier System

Arxiv:
http://arxiv.org/abs/2509.02208v1

Abstract:
As large language models (LLMs) advance in conversational and reasoning capabilities, their practical application in healthcare has become a critical research focus. However, there is a notable gap between the performance of medical LLMs on static benchmarks such as USMLE and their utility in real-world clinical decision-making. This discrepancy arises because traditional exams fail to capture the dynamic, interactive nature of medical consultations. To address this challenge, we introduce a novel dynamic verification framework that moves beyond static answer verifier, establishing a large-scale, high-fidelity interactive reinforcement learning system. Our framework comprises two key components: a Patient Simulator that creates realistic clinical environments using de-identified medical records, and a Clinical Rubrics Generator that dynamically produces multi-dimensional evaluation metrics. Building on this foundation, we develop Baichuan-M2, a 32B-parameter medical augmented reasoning model trained through a multi-stage reinforcement learning strategy with an improved Group Relative Policy Optimization (GRPO) algorithm. Evaluated on HealthBench, Baichuan-M2 outperforms all other open-source models and most advanced closed-source counterparts, achieving a score above 32 on the challenging HealthBench Hard benchmark-previously exceeded only by GPT-5. Our work demonstrates that robust dynamic verifier system is essential for aligning LLM capabilities with practical clinical applications, establishing a new Pareto front in the performance-parameter trade-off for medical AI deployment.


Subscribe

Listen to Daily Paper Cast using one of many popular podcasting apps or directories.

Apple Podcasts Spotify Overcast Pocket Casts YouTube
← Previous · All Episodes · Next →