· 26:40
🤗 Upvotes: 30 | cs.CV, cs.RO
Authors:
Yu Qi, Haibo Zhao, Ziyu Guo, Siyuan Ma, Ziyan Chen, Yaokun Han, Renrui Zhang, Zitiantao Lin, Shiji Xin, Yijian Huang, Kai Cheng, Peiheng Wang, Jiazheng Liu, Jiayi Zhang, Yizhe Zhu, Wenqing Wang, Yiran Qin, Xupeng Zhu, Haojie Huang, Lawson L. S. Wong
Title:
BEAR: Benchmarking and Enhancing Multimodal Language Models for Atomic Embodied Capabilities
Arxiv:
http://arxiv.org/abs/2510.08759v1
Abstract:
Embodied capabilities refer to a suite of fundamental abilities for an agent to perceive, comprehend, and interact with the physical world. While multimodal large language models (MLLMs) show promise as embodied agents, a thorough and systematic evaluation of their embodied capabilities remains underexplored, as existing benchmarks primarily focus on specific domains such as planning or spatial understanding. To bridge this gap, we introduce BEAR, a comprehensive and fine-grained benchmark that evaluates MLLMs on atomic embodied capabilities. BEAR comprises 4,469 interleaved image-video-text entries across 14 domains in 6 categories, including tasks from low-level pointing, trajectory understanding, spatial reasoning, to high-level planning. Extensive evaluation results of 20 representative MLLMs reveal their persistent limitations across all domains of embodied capabilities. To tackle the shortfall, we propose BEAR-Agent, a multimodal conversable agent that integrates pretrained vision models to strengthen MLLM perception, 3D understanding, and planning capabilities. It substantially enhances MLLM performance across diverse embodied capabilities on BEAR, yielding a 9.12% absolute gain and a relative improvement of 17.5% on GPT-5. Furthermore, our experiments indicate that improving MLLM embodied capabilities can benefit embodied tasks in simulated environments. Project website: https://bear-official66.github.io/
Listen to Daily Paper Cast using one of many popular podcasting apps or directories.