← Previous · All Episodes · Next →
FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing Episode 214

FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing

· 21:47

|

🤗 Upvotes: 8 | cs.CV

Authors:
Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, Fan Tang

Title:
FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing

Arxiv:
http://arxiv.org/abs/2412.07517v1

Abstract:
Though Rectified Flows (ReFlows) with distillation offers a promising way for fast sampling, its fast inversion transforms images back to structured noise for recovery and following editing remains unsolved. This paper introduces FireFlow, a simple yet effective zero-shot approach that inherits the startling capacity of ReFlow-based models (such as FLUX) in generation while extending its capabilities to accurate inversion and editing in $8$ steps. We first demonstrate that a carefully designed numerical solver is pivotal for ReFlow inversion, enabling accurate inversion and reconstruction with the precision of a second-order solver while maintaining the practical efficiency of a first-order Euler method. This solver achieves a $3\times$ runtime speedup compared to state-of-the-art ReFlow inversion and editing techniques, while delivering smaller reconstruction errors and superior editing results in a training-free mode. The code is available at $\href{https://github.com/HolmesShuan/FireFlow}{this URL}$.


Subscribe

Listen to Daily Paper Cast using one of many popular podcasting apps or directories.

Apple Podcasts Spotify Overcast Pocket Casts
← Previous · All Episodes · Next →