← Previous · All Episodes · Next →
RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation Episode 1166

RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation

· 28:25

|

🤗 Upvotes: 89 | cs.CL, cs.AI, cs.SE

Authors:
Jane Luo, Xin Zhang, Steven Liu, Jie Wu, Yiming Huang, Yangyu Huang, Chengyu Yin, Ying Xin, Jianfeng Liu, Yuefeng Zhan, Hao Sun, Qi Chen, Scarlett Li, Mao Yang

Title:
RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation

Arxiv:
http://arxiv.org/abs/2509.16198v1

Abstract:
Large language models excel at function- and file-level code generation, yet generating complete repositories from scratch remains a fundamental challenge. This process demands coherent and reliable planning across proposal- and implementation-level stages, while natural language, due to its ambiguity and verbosity, is ill-suited for faithfully representing complex software structures. To address this, we introduce the Repository Planning Graph (RPG), a persistent representation that unifies proposal- and implementation-level planning by encoding capabilities, file structures, data flows, and functions in one graph. RPG replaces ambiguous natural language with an explicit blueprint, enabling long-horizon planning and scalable repository generation. Building on RPG, we develop ZeroRepo, a graph-driven framework for repository generation from scratch. It operates in three stages: proposal-level planning and implementation-level refinement to construct the graph, followed by graph-guided code generation with test validation. To evaluate this setting, we construct RepoCraft, a benchmark of six real-world projects with 1,052 tasks. On RepoCraft, ZeroRepo produces repositories averaging nearly 36K LOC, roughly 3.9$\times$ the strongest baseline (Claude Code) and about 64$\times$ other baselines. It attains 81.5% functional coverage and a 69.7% pass rate, exceeding Claude Code by 27.3 and 35.8 percentage points, respectively. Further analysis shows that RPG models complex dependencies, enables progressively more sophisticated planning through near-linear scaling, and enhances LLM understanding of repositories, thereby accelerating agent localization.


Subscribe

Listen to Daily Paper Cast using one of many popular podcasting apps or directories.

Apple Podcasts Spotify Overcast Pocket Casts YouTube
← Previous · All Episodes · Next →