← Previous · All Episodes · Next →
The Alignment Waltz: Jointly Training Agents to Collaborate for Safety Episode 1255

The Alignment Waltz: Jointly Training Agents to Collaborate for Safety

· 24:20

|

🤗 Upvotes: 33 | cs.CL

Authors:
Jingyu Zhang, Haozhu Wang, Eric Michael Smith, Sid Wang, Amr Sharaf, Mahesh Pasupuleti, Benjamin Van Durme, Daniel Khashabi, Jason Weston, Hongyuan Zhan

Title:
The Alignment Waltz: Jointly Training Agents to Collaborate for Safety

Arxiv:
http://arxiv.org/abs/2510.08240v1

Abstract:
Harnessing the power of LLMs requires a delicate dance between being helpful and harmless. This creates a fundamental tension between two competing challenges: vulnerability to adversarial attacks that elicit unsafe content, and a tendency for overrefusal on benign but sensitive prompts. Current approaches often navigate this dance with safeguard models that completely reject any content that contains unsafe portions. This approach cuts the music entirely-it may exacerbate overrefusals and fails to provide nuanced guidance for queries it refuses. To teach models a more coordinated choreography, we propose WaltzRL, a novel multi-agent reinforcement learning framework that formulates safety alignment as a collaborative, positive-sum game. WaltzRL jointly trains a conversation agent and a feedback agent, where the latter is incentivized to provide useful suggestions that improve the safety and helpfulness of the conversation agent's responses. At the core of WaltzRL is a Dynamic Improvement Reward (DIR) that evolves over time based on how well the conversation agent incorporates the feedback. At inference time, unsafe or overrefusing responses from the conversation agent are improved rather than discarded. The feedback agent is deployed together with the conversation agent and only engages adaptively when needed, preserving helpfulness and low latency on safe queries. Our experiments, conducted across five diverse datasets, demonstrate that WaltzRL significantly reduces both unsafe responses (e.g., from 39.0% to 4.6% on WildJailbreak) and overrefusals (from 45.3% to 9.9% on OR-Bench) compared to various baselines. By enabling the conversation and feedback agents to co-evolve and adaptively apply feedback, WaltzRL enhances LLM safety without degrading general capabilities, thereby advancing the Pareto front between helpfulness and harmlessness.


Subscribe

Listen to Daily Paper Cast using one of many popular podcasting apps or directories.

Apple Podcasts Spotify Overcast Pocket Casts YouTube
← Previous · All Episodes · Next →